Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 968
Filtrar
1.
BMC Res Notes ; 17(1): 51, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369539

RESUMO

OBJECTIVES: The collection of genotype data was conducted as an essential part of a pivotal research project with the goal of examining the genetic variability of skin, hair, and iris color among the Kazakh population. The data has practical application in the field of forensic DNA phenotyping (FDA). Due to the limited size of forensic databases from Central Asia (Kazakhstan), it is practically impossible to obtain an individual identification result based on forensic profiling of short tandem repeats (STRs). However, the pervasive use of the FDA necessitates validation of the currently employed set of genetic markers in a variety of global populations. No such data existed for the Kazakhs. The Phenotype Expert kit (DNA Research Center, LLC, Russia) was used for the first time in this study to collect data. DATA DESCRIPTION: The present study provides genotype data for a total of 60 SNP genetic markers, which were analyzed in a sample of 515 ethnic Kazakhs. The dataset comprises a total of 41 single nucleotide polymorphisms (SNPs) obtained from the HIrisPlex-S panel. Additionally, there are 4 SNPs specifically related to the AB0 gene, 1 marker associated with the AMELX/Y genes, and 14 SNPs corresponding to the primary haplogroups of the Y chromosome. The aforementioned data could prove valuable to researchers with an interest in investigating genetic variability and making predictions about phenotype based on eye color, hair color, skin color, AB0 blood group, gender, and biogeographic origin within the male lineage.


Assuntos
Sistema ABO de Grupos Sanguíneos , População da Ásia Central , Cromossomos Humanos Y , Haplótipos , Pigmentação , Humanos , Masculino , Sistema ABO de Grupos Sanguíneos/genética , População da Ásia Central/genética , Cromossomos Humanos Y/genética , DNA/genética , Marcadores Genéticos , Genética Populacional , Genótipo , Cabelo , Haplótipos/genética , Polimorfismo de Nucleotídeo Único/genética , Pigmentação da Pele/genética , Pigmentação/genética , Variação Genética/genética
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38243850

RESUMO

Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.


Assuntos
Lagartos , Melaninas , Animais , Melaninas/genética , Lagartos/genética , Peixe-Zebra , Regulação da Temperatura Corporal/genética , Pigmentação da Pele/genética , Cor
3.
Nat Genet ; 56(2): 258-272, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200130

RESUMO

Skin color is highly variable in Africans, yet little is known about the underlying molecular mechanism. Here we applied massively parallel reporter assays to screen 1,157 candidate variants influencing skin pigmentation in Africans and identified 165 single-nucleotide polymorphisms showing differential regulatory activities between alleles. We combine Hi-C, genome editing and melanin assays to identify regulatory elements for MFSD12, HMG20B, OCA2, MITF, LEF1, TRPS1, BLOC1S6 and CYB561A3 that impact melanin levels in vitro and modulate human skin color. We found that independent mutations in an OCA2 enhancer contribute to the evolution of human skin color diversity and detect signals of local adaptation at enhancers of MITF, LEF1 and TRPS1, which may contribute to the light skin color of Khoesan-speaking populations from Southern Africa. Additionally, we identified CYB561A3 as a novel pigmentation regulator that impacts genes involved in oxidative phosphorylation and melanogenesis. These results provide insights into the mechanisms underlying human skin color diversity and adaptive evolution.


Assuntos
Albinismo Oculocutâneo , Melaninas , Pigmentação da Pele , Humanos , Pigmentação da Pele/genética , Melaninas/genética , Alelos , Genômica , Pigmentação/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Repressoras/genética
6.
Artigo em Inglês | MEDLINE | ID: mdl-38007980

RESUMO

Fish body color changes play vital roles in adapting to ecological light environment and influencing market value. However, the initial mechanisms governing the changes remain unknown. Here, we scrutinized the impact of light spectrum on turbot (Scophthalmus maximus) body coloration, exposing them to red, blue, and full light spectra from embryo to 90 days post hatch. Transcriptome and quantitative real-time PCR (qRT-PCR) analyses were employed to elucidate underlying biological processes. The results showed that red light induced dimorphism in turbot juvenile skin pigmentation: some exhibited black coloration (Red_Black_Surface, R_B_S), while others displayed lighter skin (Red_White_Bottom, R_W_B), with red light leading to reduced skin lightness (L*) and body weight, particularly in R_B_S group. Transcriptomic and qRT-PCR analyses showcased upregulated gene expressions related to melanin synthesis in R_B_S individuals, notably tyrosinase (tyr), tyrosinase-related protein 1 (tyrp1), and dopachrome tautomerase (dct), alongside solute carrier family 24 member 5 (slc24a5) and oculocutaneous albinism type II (oca2) as pivotal regulators. Nervous system emerged as a critical mediator in spectral environment-driven color regulation. N-methyl d-aspartate (NMDA) glutamate receptor, and calcium signaling pathway emerged as pivotal links intertwining spectral conditions, neural signal transduction, and color regulation. The individual differences in NMDA glutamate receptor expression and subsequent neural excitability seemed responsible for dichromatic body coloration in red light-expose juveniles. This study provides new insights into the comprehending of fish adaptation to environment and methods for fish body color regulation and could potentially help enhance the economic benefit of fish farming industry.


Assuntos
Albinismo Oculocutâneo , Linguados , Transcriptoma , Animais , Monofenol Mono-Oxigenase/genética , N-Metilaspartato/genética , Perfilação da Expressão Gênica , Pigmentação da Pele/genética , Receptores de Glutamato/genética
7.
Pigment Cell Melanoma Res ; 37(2): 259-264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37874775

RESUMO

MFSD12 functions as a transmembrane protein required for import of cysteine into melanosomes and lysosomes. The MFSD12 locus has been associated with phenotypic variation in skin color across African, Latin American, and East Asian populations. The frequency of a particular MFSD12 coding variant, rs2240751 (MAF = 0.08), has been reported to correlate with solar radiation and occur at highest frequency in Peruvian (PEL MAF = 0.48) and Han Chinese (CHB MAF = 0.40) populations, suggesting it could be causative for associated phenotypic variation in skin color. We have generated a mouse knock-in allele, Mfsd12Y182H , to model the human missense p.Tyr182His human variant. We demonstrate that the variant transcript is stably expressed and that agouti mice homozygote for the variant allele are viable with an altered coat color. This in vivo data confirms that the MFSD12 p.Tyr182His variant functions as a hypomorphic allele sufficient to alter mammalian pigmentation.


Assuntos
Proteínas de Membrana , Pigmentação da Pele , Animais , Camundongos , Proteína Agouti Sinalizadora/genética , Alelos , Cor de Cabelo/genética , Homozigoto , Proteínas de Membrana/genética , Mutação de Sentido Incorreto/genética , Pigmentação da Pele/genética
8.
Int J Biol Macromol ; 254(Pt 1): 127638, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37879576

RESUMO

MicroRNAs (miRNAs) play crucial roles in skin pigmentation in animals. Rainbow trout (Oncorhynchus mykiss) is a key economic fish species worldwide, and skin color directly affects its economic value. However, the functions of miRNAs in rainbow trout skin pigmentation remain largely unknown. Herein, we overexpressed and silenced miR-495 in vitro and in vivo to investigate its functions. The analysis of spatial and temporal expression patterns suggested that miR-495 is a potential regulator during the process of skin pigmentation. In vitro, mc1r was validated as a direct target for miR-495 by dual-luciferase reporter assay, and overexpression of miR-495 significantly inhibited mc1r expression; in contrast, mc1r and its downstream gene mitf levels were markedly upregulated by decreased miR-495. In vivo, overexpressed miR-495 by injecting agomiR-495 led to a substantial decrease in the expression of mc1r and mitf in dorsal skin and liver, while the opposite results were obtained after miR-495 silencing by antagomiR-495. These findings suggested that miR-495 can target mc1r to regulate rainbow trout skin pigmentation, which provide a potential basis for using miRNAs as target drugs to treat pigmentation disorders and melanoma.


Assuntos
MicroRNAs , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Pigmentação da Pele/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fígado/metabolismo , Antagomirs
9.
Biol Lett ; 19(12): 20230304, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087942

RESUMO

Evolutionary biologists have long been interested in understanding the factors that promote diversification in organisms, often focussing on distinct and/or conspicuous phenotypes with direct effects on natural or sexual selection such as body size and plumage coloration. However, multiple traits that potentially influence net diversification are not conspicuous and/or might be concealed. One such trait, the dark, melanin-rich skin concealed beneath the feathers, evolved more than 100 times during avian evolution, frequently in association with white feathers on the crown and UV-rich environments, suggesting that it is a UV-photoprotective adaptation. Furthermore, multiple species are polymorphic, having both light and dark skin potentially aiding occupation in different UV radiation environments. As such these polymorphisms are predicted to occur in species with large latitudinal variation in their distribution. Furthermore, by alleviating evolutionary constraints on feather colour, the evolution of dark skin may promote net diversification. Here, using an expanded dataset on bird skin coloration of 3033 species we found that more than 19% of species had dark skin. In contrast to our prediction, dark skinned birds have smaller distribution ranges. Furthermore, both dark skin and polymorphism in skin coloration promote net diversification. These results suggest that even concealed traits can influence large scale evolutionary events such as diversification in birds.


Assuntos
Melaninas , Pigmentação da Pele , Animais , Pigmentação da Pele/genética , Melaninas/genética , Evolução Biológica , Aves/genética , Raios Ultravioleta , Plumas , Pigmentação
10.
Genes Cells ; 28(12): 893-905, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864512

RESUMO

The transcriptome data of skin cells from domestic cats with brown, orange, and white coats were analyzed using a public database to investigate the possible relationship between coat color-related gene expression and squamous cell carcinoma risk, as well as the mechanism of deafness in white cats. We found that the ratio of the expression level of genes suppressing squamous cell carcinoma to that of genes promoting squamous cell carcinoma might be considerably lower than the theoretical estimation in skin cells with orange and white coats in white-spotted cat. We also found the possibility of the frequent production of KIT lacking the first exon (d1KIT) in skin cells with white coats, and d1KIT production exhibited a substantial negative correlation with the expression of SOX10, which is essential for melanocyte formation and adjustment of hearing function. Additionally, the production of d1KIT was expected to be due to the insulating activity of the feline endogenous retrovirus 1 (FERV1) LTR in the first intron of KIT by its CTCF binding sequence repeat. These results contribute to basic veterinary research to understand the relationship between cat skin coat and disease risk, as well as the underlying mechanism.


Assuntos
Surdez , Pigmentação da Pele , Animais , Gatos , RNA-Seq , Pigmentação da Pele/genética , Íntrons , Fatores de Risco
11.
Artigo em Inglês | MEDLINE | ID: mdl-37690214

RESUMO

Red skin color in Plectropomus leopardus is important to its ornamental and economic value. However, the color of P. leopardus can change during the rearing process, darkening and turning black due to the influence of environmental background color. The underlying molecular mechanisms that regulate this phenomenon remain unclear. MicroRNAs (miRNAs) are endogenous, small non-coding RNAs that play important roles in numerous biological processes, such as skin differentiation and color formation in many animals. Therefore, we performed miRNA sequencing of P. leopardus skin before (initial) and after rearing with three different background colors (white, black, and blue) using Illumina sequencing to identify candidate miRNAs that may contribute to skin color differentiation. In total, 154,271,376 clean reads were obtained, with over 92 % of them successfully mapped to the P. leopardus reference genome. The miRNA length distributions of all samples displayed peaks around a typical length of 22 nt. Within these sequences, 243 known and 287 novel miRNAs were identified. A total of 65 significantly differentially expressed miRNAs (DEMs) were identified (P < 0.05), including 40 known DEMs and 25 novel DEMs. These DEMs included novel_561, miR-141-3p, and miR-129-5p, whose target genes were primarily associated with pigmentation related processes, including tyrosine metabolism, melanogenesis, and the Wnt signaling pathway. These findings shed light on the potential roles of miRNAs in the darkening of skin color in P. leopardus, thus enhancing our understanding of the molecular mechanisms involved in skin pigmentation differentiation in this species.


Assuntos
Bass , MicroRNAs , Animais , Pigmentação da Pele/genética , MicroRNAs/genética , Perfilação da Expressão Gênica , Bass/genética , Pele/metabolismo , Transcriptoma
12.
Science ; 381(6658): eade6289, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37561850

RESUMO

Skin color, one of the most diverse human traits, is determined by the quantity, type, and distribution of melanin. In this study, we leveraged the light-scattering properties of melanin to conduct a genome-wide screen for regulators of melanogenesis. We identified 169 functionally diverse genes that converge on melanosome biogenesis, endosomal transport, and gene regulation, of which 135 represented previously unknown associations with pigmentation. In agreement with their melanin-promoting function, the majority of screen hits were up-regulated in melanocytes from darkly pigmented individuals. We further unraveled functions of KLF6 as a transcription factor that regulates melanosome maturation and pigmentation in vivo, and of the endosomal trafficking protein COMMD3 in modulating melanosomal pH. Our study reveals a plethora of melanin-promoting genes, with broad implications for human variation, cell biology, and medicine.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fator 6 Semelhante a Kruppel , Melaninas , Melanócitos , Melanossomas , Pigmentação da Pele , Humanos , Melaninas/biossíntese , Melaninas/genética , Melanócitos/metabolismo , Melanossomas/metabolismo , Pigmentação da Pele/genética , Estudo de Associação Genômica Ampla , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator 6 Semelhante a Kruppel/genética , Fator 6 Semelhante a Kruppel/metabolismo , Endossomos/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral
13.
Poult Sci ; 102(8): 102720, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37327746

RESUMO

Skin color in chickens is an economically important trait that determines the first impression of a consumer toward a broiler and can ultimately affect consumer choice in the market. Therefore, identification of genomic regions associated with skin color is crucial for increasing the sales value of chickens. Although previous studies have attempted to reveal the genetic markers associated with the skin coloration in chickens, most were limited to investigations of candidate genes, such as melanin-related genes, and focused on case/control studies based on a single or small population. In this study, we performed a genome-wide association study (GWAS) on 770 F2 intercrosses produced by an experimental population of 2 chicken breeds, namely Ogye and White Leghorns, with different skin colors. The GWAS demonstrated that the L* value among the 3 skin color traits is highly heritable, and the genomic regions located on 2 chromosomes (20 and Z) were detected to harbor SNPs significantly associated with the skin color trait, accounting for most of the total genetic variance. Particular genomic regions spanning a ∼2.94 Mb region on GGA Z and a ∼3.58 Mb region on GGA 20 were significantly associated with skin color traits, and in these regions, certain candidate genes, including MTAP, FEM1C, GNAS, and EDN3, were found. Our findings could help elucidate the genetic mechanisms underlying chicken skin pigmentation. Furthermore, the candidate genes can be used to provide a valuable breeding strategy for the selection of specific chicken breeds with ideal skin coloration.


Assuntos
Estudo de Associação Genômica Ampla , Pigmentação da Pele , Animais , Pigmentação da Pele/genética , Estudo de Associação Genômica Ampla/veterinária , Galinhas/genética , Genoma , Genômica , Fenótipo , Polimorfismo de Nucleotídeo Único
14.
Elife ; 122023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294081

RESUMO

Our interest in the genetic basis of skin color variation between populations led us to seek a Native American population with genetically African admixture but low frequency of European light skin alleles. Analysis of 458 genomes from individuals residing in the Kalinago Territory of the Commonwealth of Dominica showed approximately 55% Native American, 32% African, and 12% European genetic ancestry, the highest Native American genetic ancestry among Caribbean populations to date. Skin pigmentation ranged from 20 to 80 melanin units, averaging 46. Three albino individuals were determined to be homozygous for a causative multi-nucleotide polymorphism OCA2NW273KV contained within a haplotype of African origin; its allele frequency was 0.03 and single allele effect size was -8 melanin units. Derived allele frequencies of SLC24A5A111T and SLC45A2L374F were 0.14 and 0.06, with single allele effect sizes of -6 and -4, respectively. Native American genetic ancestry by itself reduced pigmentation by more than 20 melanin units (range 24-29). The responsible hypopigmenting genetic variants remain to be identified, since none of the published polymorphisms predicted in prior literature to affect skin color in Native Americans caused detectable hypopigmentation in the Kalinago.


The variation in skin colour of modern humans is a product of thousands of years of natural selection. All human ancestry can be traced back to African populations, which were dark-skinned to protect them from the intense UV rays of the sun. Over time, humans spread to other parts of the world, and people in the northern latitudes with lower UV developed lighter skin through natural selection. This was likely driven by a need for vitamin D, which requires UV rays for production. Separate genetic mechanisms were involved in the evolution of lighter skin in each of the two main branches of human migration: the European branch (which includes peoples on the Indian subcontinent and Europe) and the East Asian branch (which includes East Asia and the Americas). A variant of the gene SLC24A5 is the primary contributor to lighter skin colour in the European branch, but a corresponding variant driving light skin colour evolution in the East Asian branch remains to be identified. One obstacle to finding such variants is the high prevalence of European ancestry in most people groups, which makes it difficult to separate the influence of European genes from those of other populations. To overcome this issue, Ang et al. studied a population that had a high proportion of Native American and African ancestors, but a relatively small proportion of European ancestors, the Kalinago people. The Kalinago live on the island of Dominica, one of the last Caribbean islands to be colonised by Europeans. Ang et al. were able to collect hundreds of skin pigmentation measurements and DNA samples of the Kalinago, to trace the effect of Native American ancestry on skin colour. Genetic analysis confirmed their oral history records of primarily Native American (55%) ­ one of the highest of any Caribbean population studied to date ­ compared with African (32%) and European (12%) ancestries. Native American ancestry had the highest effect on pigmentation and reduced it by more than 20 melanin units, while the European mutations in the genes SLC24A5 and SLC45A2 and an African gene variant for albinism only contributed 5, 4 and 8 melanin units, respectively. However, none of the so far published gene candidates responsible for skin lightening in Native Americans caused a detectable effect. Therefore, the gene responsible for lighter skin in Native Americans/East Asians has yet to be identified. The work of Ang et al. represents an important step in deciphering the genetic basis of lighter skin colour in Native Americans or East Asians. A better understanding of the genetics of skin pigmentation may help to identify why, for example, East Asians are less susceptible to melanoma than Europeans, despite both having a lighter skin colour. It may also further acceptance of how variations in human skin tones are the result of human migration, random genetic variation, and natural selection for pigmentation in different solar environments.


Assuntos
Indígena Americano ou Nativo do Alasca , População do Caribe , Melaninas , Pigmentação da Pele , Humanos , Alelos , Indígena Americano ou Nativo do Alasca/genética , População Negra/genética , População do Caribe/genética , Etnicidade , Melaninas/genética , Polimorfismo de Nucleotídeo Único , Pigmentação da Pele/genética , População Branca/genética
15.
Environ Mol Mutagen ; 64(5): 309-314, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37235680

RESUMO

The melanogenesis pathway regulates pigmentation through the synergic action of various genes. We are interested in analyzing the genetic variations in the ASIP which determine eumelanin production in the dermis layer. In the present study, the ASIP gene was characterized in buffalo and 268 genetically unrelated buffaloes belonging to 10 different populations were genotyped for the non-synonymous SNP (c.292C>T) identified in the exon 3 region of the gene using Tetra-ARMS-PCR. The TT genotype occurred at a higher rate in Murrah, followed by Nili Ravi, Tripura, and Paralakhemundi (42.63%, 19.30%, 3.45%, and 3.33%). These results convey the association of the black coat color of Murrah with the ASIP gene TT genotype and the lighter shades of black coat (brown and grayish-black) color phenotype in other breeds with the CC genotype.


Assuntos
Búfalos , Pigmentação da Pele , Animais , Pigmentação da Pele/genética , Búfalos/genética , Polimorfismo Genético , Genótipo , Fenótipo
16.
Clin Nutr ESPEN ; 55: 230-237, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37202051

RESUMO

BACKGROUND: The absorption of vitamin D occurs via two main pathways: first, through the biosynthesis in the skin under the exposure of UV from sunlight; and second, through the intake of certain foods. However, its levels can be influenced by both genetic and environmental factors, which can generate changes such as vitamin D deficiency (hypovitaminosis D), a condition that black adults have a high potential to suffer from. OBJECTIVE: The aim of this work is to study the association of skin color (self-reported: black, brown and white), food consumption, and the BsmI polymorphism in the vitamin D receptor gene (VDR) on serum levels of vitamin D in a group of adults. METHODS: This was a cross-sectional analytical study. Individuals in the community were invited to participate in the research and, After signing the informed consent, a structured questionnaire was applied containing identification data, self-declaration of race/color, and nutritional data (Food frequency questionnaire (FFQ) and 24 h); afterwards, blood was collected for biochemical analysis, vitamin D was measured by Chemiluminescence and RT-PCR was used to evaluate the BsmI polymorphism of the VDR gene. Data was analyzed using a statistical program (SPSS 20.0) and differences between groups using p < 0.05. RESULTS: A total of 114 persons was evaluated between black, brown and white individuals. It was found that a large part of the sample presents hypovitaminosis D, and blacks stand out with an average serum vitamin D level of 15.9 ng/dL. The group demonstrated that dietary intake of vitamin D is low, with the present study is a pioneer in associating the polymorphism of the VDR gene (BsmI) with the consumption of foods that are considered to have a higher content of vitamin D in their composition. CONCLUSION: The VDR gene does not represent a risk factor for the consumption of vitamin D in this sample, and it was found that the self-declaration of "black" skin color was an independent risk factor for low serum levels of vitamin D.


Assuntos
Deficiência de Vitamina D , Vitamina D , Adulto , Humanos , Estudos Transversais , Receptores de Calcitriol/genética , Fatores de Risco , Pigmentação da Pele/genética , Deficiência de Vitamina D/genética , Vitaminas
17.
J Invest Dermatol ; 143(12): 2494-2506.e4, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37236596

RESUMO

Skin pigmentation is paused after sun exposure; however, the mechanism behind this pausing is unknown. In this study, we found that the UVB-induced DNA repair system, led by the ataxia telangiectasia mutated (ATM) protein kinase, represses MITF transcriptional activity of pigmentation genes while placing MITF in DNA repair mode, thus directly inhibiting pigment production. Phosphoproteomics analysis revealed ATM to be the most significantly enriched pathway among all UVB-induced DNA repair systems. ATM inhibition in mouse or human skin, either genetically or chemically, induces pigmentation. Upon UVB exposure, MITF transcriptional activation is blocked owing to ATM-dependent phosphorylation of MITF on S414, which modifies MITF activity and interactome toward DNA repair, including binding to TRIM28 and RBBP4. Accordingly, MITF genome occupancy is enriched in sites of high DNA damage that are likely repaired. This suggests that ATM harnesses the pigmentation key activator for the necessary rapid, efficient DNA repair, thus optimizing the chances of the cell surviving. Data are available from ProteomeXchange with the identifier PXD041121.


Assuntos
Ataxia Telangiectasia , Humanos , Animais , Camundongos , Pigmentação da Pele/genética , Reparo do DNA , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Transdução de Sinais , Dano ao DNA , Fosforilação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo
18.
BMC Genomics ; 24(1): 124, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927381

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play a critical role in regulating skin pigmentation. As a key economic trait, skin color directly affects the market value of rainbow trout (Oncorhynchus mykiss), however, the regulatory mechanism of most miRNAs in fish skin color is still unclear. RESULTS: In this study, the full-length cDNA sequence of ß-carotene oxygenase 2 (BCO2, a key regulator of carotenoid metabolism) from the rainbow trout was obtained using rapid-amplification of cDNA ends (RACE) technology, and qRT-PCR was used to investigate the differential expression of miR-330 and BCO2 in 14 developmental stages and 13 tissues between wild-type rainbow trout (WTrt) and yellow mutant rainbow trout (YMrt). Additionally, the function of miR-330 was verified by overexpression and silencing in vitro and in vivo. The results showed that the complete cDNA sequence of BCO2 was 2057 bp with a 1707 bp ORF, encoding a 568 amino acid protein having a molecular weight of 64.07 kD. Sequence alignment revealed that higher conservation of BCO2 protein amongst fishes than amongst other vertebrates, which was further confirmed by phylogenetic analysis. The analysis of spatial and temporal expression patterns suggested that BCO2 and miR-330 were abundantly expressed from fertilized-stage to multi-cell as well as in the dorsal and ventral skin of WTrt and YMrt, and their expression patterns were opposite in most of the same periods and tissues. In vitro, luciferase reporter assay confirmed that BCO2 was a direct target of miR-330, and transfection of miR-330 mimics into rainbow trout liver cells resulted in a decrease in the expression of BCO2; conversely, miR-330 inhibitor had the opposite effect to the miR-330 mimics. In vivo, miR-330 agomir significantly decreased BCO2 expression in dorsal skin, tail fin, and liver. Furthermore, overexpression of miR-330 could suppress cell proliferation and induce apoptosis. CONCLUSION: Our results showed that miR-330 is involved in the regulation of skin pigmentation in rainbow trout by targeting BCO2 and shows its promise as a potential molecular target to assist the selection of rainbow trout with better skin color patterns.


Assuntos
MicroRNAs , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , DNA Complementar , Pigmentação da Pele/genética , Filogenia , MicroRNAs/genética , MicroRNAs/metabolismo , Carotenoides
19.
J Endocrinol Invest ; 46(9): 1911-1921, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36862244

RESUMO

PURPOSE: Vitamin D (VD) deficiency and osteoporosis have become a global public health problem. A variant in the Histidine Ammonia-Lyase (HAL) gene has been associated with VD levels and bone mineral density (BMD). However, whether this variant has an influence on VD levels and BMD in Mexican adults remain unclear. METHODS: This cross-sectional analysis included 1,905 adults participating in the Health Worker Cohort Study and 164 indigenous postmenopausal women from the Metabolic Analysis in an Indigenous Sample (MAIS) cohort. The rs3819817 variant was genotyped by TaqMan probe assay. Total 25 hydroxyvitamin D levels were measured by DiaSorin Liaison. BMD at the different sites was assessed through dual-energy X-ray absorptiometry. Linear and logistic regression models were performed to evaluate the associations of interest. RESULTS: The prevalence of VD deficiency was 41%, showing differences between sexes. Obesity and skin pigmentation were associated with lower levels of VD in males and females. rs3819817-T allele was associated with low levels of 25-hydroxyvitamin D, VD deficiency, and hip and femoral neck BMD values (g/cm2). We found two interactions with VD levels, one between adiposity and rs3819817-T allele (P = 0.017) and another between skin pigmentation and rs3819817-T allele (P = 0.019). In indigenous postmenopausal women, we observed higher VD levels in the southern region compared to the northern region (P < 0.001); however, we did not observe differences by genotype. CONCLUSION: Our findings confirm that the genetic variant rs3819817 has an essential function in VD levels and BMD and suggests a role in skin pigmentation in the Mexican population.


Assuntos
Densidade Óssea , Deficiência de Vitamina D , Masculino , Adulto , Feminino , Humanos , Densidade Óssea/genética , Histidina Amônia-Liase , Adiposidade , Estudos de Coortes , Estudos Transversais , Pigmentação da Pele/genética , Vitamina D , Obesidade , Absorciometria de Fóton , Deficiência de Vitamina D/epidemiologia , Deficiência de Vitamina D/genética , Calcifediol , Nucleotídeos
20.
Zool Res ; 44(2): 276-286, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36785895

RESUMO

Common carp are among the oldest domesticated fish in the world. As such, there are many food and ornamental carp strains with abundant phenotypic variations due to natural and artificial selection. Hebao red carp (HB, Cyprinus carpio wuyuanensis), an indigenous strain in China, is renowned for its unique body morphology and reddish skin. To reveal the genetic basis underlying the distinct skin color of HB, we constructed an improved high-fidelity (HiFi) HB genome with good contiguity, completeness, and correctness. Genome structure comparison was conducted between HB and a representative wild strain, Yellow River carp (YR, C. carpio haematopterus), to identify structural variants and genes under positive selection. Signatures of artificial selection during domestication were identified in HB and YR populations, while phenotype mapping was performed in a segregating population generated by HB×YR crosses. Body color in HB was associated with regions with fixed mutations. The simultaneous mutation and superposition of a pair of homologous genes ( mitfa) in chromosomes A06 and B06 conferred the reddish color in domesticated HB. Transcriptome analysis of common carp with different alleles of the mitfa mutation confirmed that gene duplication can buffer the deleterious effects of mutation in allotetraploids. This study provides new insights into genotype-phenotype associations in allotetraploid species and lays a foundation for future breeding of common carp.


Assuntos
Carpas , Animais , Carpas/genética , Pigmentação da Pele/genética , Genoma , Pele , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...